Banded Mongoose: mutualism, cooperative breeding, and vital adaptations

6219792092_d1e479eeaa_658w
 Banded mongooses in Kruger National Park, South Africa (Peet van Schalkwyk ©)

“It is the hardest thing in the world to frighten a mongoose, because he is eaten up from nose to tail with curiosity. The motto of all the mongoose family is ‘Run and find out'” —Rudyard Kipling, Rikki-Tikki-Tavi

Cultural inheritance in banded mongooses

The banded mongoose is a bit of an anomaly in the mammal world. Instead of the offspring being raised by their parents (and behaving similarly to their parents), they instead inherit their behaviors from other adult mongooses. The adults are random, rather than closely related to the offspring, but take on a parental role in the sense that they sort of “adopt” a baby/juvenile (about one month old) and show it how to forage, hunt, stay safe from predators, and otherwise be a mongoose properly. These role models or “escorts” will carry around the pups and teach them closely for about two months. The plasticity of mongoose behavior is sufficient to allow for pups to behave more similarly to their role models than to their parents.

This kind of transmittance of behavior is known as cultural inheritance, and is actually quite common in the animal world– but the unique setup in mongooses provides an opportunity to easily decouple the direct genetic inheritance from parents and the cultural inheritance resulting from behavioral plasticity (social learning).

Cultural evolution is becoming one of the most popular topics in biology as more and more scientists are beginning to notice how new behaviors can sweep through a population in less than a generation. The classic non-human example of this would be humpback whale songs changing year to year.

While cultural evolution occurs more quickly than genetic evolution in one sense, it also allows for genetic diversity to persist. Higher behavioral plasticity results in higher variety of trait and higher variety of preference for those traits. It can actually slow down evolution towards physiological adaptation for an environment by slowing the adaptation of physiological change. That being said, it can allow for more rapid adaption and by relying on social learning, only one or a few members of a population need to “discover” a new behavior for it to spread through the population.

It’s possible the mongooses have evolved this escort system as a way to maintain diverse foraging methods and reduce competition in their groups. Maintaining plasticity in foraging behaviors would be useful for social animals that have a wide variety of food sources, as the mongoose does.

Timon and Pumbaa: based on a true story

p02bk7tkSo admittedly Timon is a Meerkat not a banded mongoose, but it’s the same family so it’s close. In a cool example of mutualism, Warthogs (which, by the way, are awesome animals and don’t get nearly enough love) can rid themselves of ticks and bugs by getting groomed by mongooses.

Warthogs–which should look kind of scary to a small mongoose, actually get along quite well with them. Wild pigs tend to have quite a few ectoparasites and bugs inhabiting their skin/fur which can provide an easy snack for the banded mongoose. Warthogs have learned to lay down when mongooses are nearby, so they can pick off the parasites. Besides allowing mongooses to groom them, they also welcome vervet monkeys to snack on their ticks.

Mutualism between mammals is somewhat rare, but wild pigs and mongooses (and vervets for that matter) are highly intelligent and it shouldn’t come as much of a shock that they are able to enjoy the company of other species.

Mutualistic foraging between dwarf mongooses and hornbills

In another species of mongoose, the dwarf mongoose of the Taru desert often cooperatively forages with large birds, particularly hornbills, who share the same prey. The hornbills will wait to start foraging around termite mounds if the mongooses are sleeping and the mongooses will wait for the hornbills to be nearby to begin their foraging. This is true mutualism, as, while many animals have instances of exploiting each other’s coincidental presence for their benefit, the hornbills and dwarf mongoose actually plan their foraging activities around the other.

R-0891m

The mongooses and the hornbills will warn each other of predators while they forage. The hornbills will even warn the mongooses when there are predators nearby that do NOT prey on the hornbills. The hornbills recognize predators specific to the mongoose as they will not warn against predators that do not prey on the mongoose. This is a pretty unique relationship as most cases of mutualism do not involve so much complex compensative behavior between species. The two species will communicate to one another with different vocalizations, and hornbills will sometimes wake up the sleepy mongooses when they’re impatiently waiting to start snapping up unfortunate insects.

Convergent evolution of neurotoxin resistance

Mongooses are mostly known for fighting cobras (partly because they’re exceptionally quick) but their resistance to the alpha-neurotoxin in cobra venom is what especially allows for this feat.

Acetylcholine is a very important neurotransmitter, so there are acetylcholine receptors all over your muscle cells that need to be free to bind (or not bind) acetylcholine, allowing your muscles to expand/contract. This neurotoxin, called alpha-bungarotoxin (alpha-BTX), works by binding to these acetylcholine receptors and blocking them up resulting in paralysis and eventually death. However the mongoose, the snakes themselves, and several other animals have independently evolved to alter the shape of their acetylcholine receptors so the neurotoxin, alpha-BTX, doesn’t bind.

Tweaks to the nicotinic acetylcholine receptor to prevent snake neurotoxin binding have been shown to have evolved at least four separate times in mammals (the honey badger, pigs, mongooses, and hedgehogs), but in the mongoose, the tweak involves a glycosylation site on the receptor matching the site present in snakes.

Syncing up birthdays

Despite being highly social and altruistic, meerkats are a more vicious member of the mongoose family and are especially well known to participate in infanticide. As meerkats live in a matriarchy with intense dominance hierarchies, many babies do not stand a chance from more dominant pregnant females. Banded mongooses however, have managed to evolve to sync up their birth so they’re all born on the same day. This prevents infanticide as all females are on essentially identical schedules (hormonally and in how they spend their time), so pups are never left alone with other females.

pregnantmoth
Photo credit: Feargus Cooney

While most mammals have adapted to differentiate their own offspring very well, the banded mongoose benefits from having all pups be treated equally by the adult mongooses. Syncing up birth to the day or few days is a useful strategy, also seen in flamingos, where both male and female flamingos will even produce and feed crop milk to young who are not their own. However unlike flamingos, syncing up birthdays seems to be more about preventing infanticide and having a more lax dominance hierarchy.

This is a pretty unique strategy as usually species tend to fall on a continuum of high to minimal parental care. In this case, the banded mongoose receives a lot of “parental care” but not necessarily much from their parents. In almost all of nature, the level of paternal parental care is based on certainty of paternity, yet the mongoose has no idea who its close kin are. The behavior where a species mentors and takes care of young they know are not their own is, of course also seen in humans. Mongooses are exceptional in their array of cooperative behaviors– displaying reciprocity, altruism, cooperative breeding, and mutualism. But knowing humans, most will probably continue to believe we are special and entirely disconnected from these evolutionary adaptations.

Sources:

  1. Dwarf mongoose and hornbill mutualism in the Taru desert, Kenya. O. Anne-E. Rasa – Behavioral Ecology and Sociobiology – 1983
  2. How the mongoose can fight the snake: the binding site of the mongoose acetylcholine receptor. D. Barchan-S. Kachalsky-D. Neumann-Z. Vogel-M. Ovadia-E. Kochva-S. Fuchs – Proceedings of the National Academy of Sciences – 1992
  3. Decoupling of Genetic and Cultural Inheritance in a Wild Mammal. Catherine Sheppard-Harry Marshall-Richard Inger-Faye Thompson-Emma Vitikainen-Sam Barker-Hazel Nichols-David Wells-Robbie Mcdonald-Michael Cant – Current Biology – 2018
  4. Reproductive competition and the evolution of extreme birth synchrony in a cooperative mammal. S. Hodge-M. Bell-M. Cant – Biology Letters – 2010
Advertisements

New Rhabdoviruses in bat ectoparasites: as told by a rabid supporter of bat research

Vesicular_stomatitis_virus_(VSV)_EM_18_lores
vesicular stomatitis virus, taken by the CDC

Few things disturb me more than rabies. The thought of a small, bullet-shaped virus encoding only five genes, causing an incurable, creeping infection along the nervous system, into the brain, then spreading everywhere, all while causing the host to become violent and delirious– is a bit overwhelming to dwell on. Even for someone who reads about infectious disease everyday. But rabies, for all the attention it gets, belongs to a group that seems almost neglected otherwise.

Rabies, a member of the Lyssavirus genus, is unquestionably the most famous Rhabdovirus (which is fair– it’s the most deadly virus known to man), so it might be surprising to hear that most members of the rhabdovirus family don’t even seem to infect mammals.

Despite bats being well known reservoirs for some of the world’s most deadly viruses (Henipaviruses, Marburg, and Ebola to throw some names out there), bat ectoparasites have been pretty neglected by viral ecologists. This is especially surprising as arboviruses (viruses transmitted by an arthropod vector e.g., Dengue), have only been spreading further geographically as our climate heats up. Even more surprising, these bat parasite viruses are often close relatives of rabies, yet so far seem relatively harmless.

Most rhabdoviruses that actually infect bats (that we know of) have been lyssaviruses, but that could partly be because detection methods for rhabdoviruses in bats (and their ectoparasites) were often restricted to lyssaviruses. Now that we’re starting to look a bit harder, we’re realizing there’s probably a lot more viral diversity than we’d planned for.

Kanyawara virus: how much of a concern are rhabdoviruses, really?

The Kanyawara virus, a nycteribiid bat fly virus found in western Uganda, is raising some questions about rhabdovirus diversity and potential pathogenicity. A phylogenetic analysis placed the virus within a genus containing bat rhabdoviruses; Ledantevirus. If the most recent common ancestor of these viruses was bat-associated, this means is that it is likely this virus infects bats as well and is not an arthropod-specific virus, but rather and arthropod-vectored virus. Viruses that infect bats can result in bat-borne zoonoses, examples include basically all the worst things we usually think of when thinking about viruses.

1200px-Nycteribiidae_(parasite_fly_living_on_bats)_(5021769088)
Nycteribiid: Why does this thing even exist though

The researchers tested nine bats for the Kanyawara virus but no virus was found in any of them. The researchers mentioned they suspect this is due to transient viremia rather than that the virus never infects bats, but they don’t really know.

Screen Shot 2018-05-20 at 9.19.26 AM
darling member of the same genus as the host of the parasite carrying Kanyawara virus

Rhabdoviruses infect a huge range of hosts, but it seems arthropods play the biggest role in rhabdovirus ecology. Plant rhabdoviruses are usually transmitted by arthropods, fish rhabdoviruses are often transmitted by aquatic arthropods, and many viruses have been found in both vertebrates and arthropods or are vectored by arthropods. That being said, many rhabdoviruses are insect-only viruses which would make them significantly less concerning. However bats are way overrepresented amongst non-arthropod hosts in terms of how many rhabdoviruses infect them as a preferred host.

Host-parasite coevolution

Previous phylogenetic analyses done by a group at Cambridge show rhabdoviruses as closely coevolving with their hosts. When a host phylogeny closely matches a virus phylogeny this is strong evidence for coevolution. The more detailed phylogeny in this study, shows a less mirrored picture. Basically there’s a positive correlation between genetic distance of the hosts and genetic distance of the viruses, but the viruses seem to switch easily between closely related species.

The group found only two major host switch types in the phylogeny (a host switch being more broad in this case, when a virus from one host cluster such as plants, arthropods, or vertebrates switches over). Three phylogenetic transitions were from an arthropod-vectored vertebrate virus to a vertebrate-specific virus. Two were arthropod-vectored to arthropod-specific. One arthropod-vectored, to arthropod-specific group, the sigma viruses, actually lost their vertebrate hosts and are now vertically transmitted.

This type of analysis is useful because it allows us to predict with some confidence whether a virus isolated from a host is a likely pathogenic threat based on where it might fit in a phylogeny. These types of large scale phylogenetic analyses are becoming even more useful now that we are discovering so many viruses but can’t necessarily keep up with understanding their biology.

If most rhabdoviruses are harmless, but rabies (a rhabdovirus) can infect basically anything, and is the most deadly pathogen known to man, you can imagine how confusing it is when a new rhabdovirus emerges. We really don’t know what’s out there, even when it comes to human rhabdoviruses. Recent studies have isolated new rhabdoviruses in apparently healthy people in West Africa, some of which were extremely similar genetically to Bas-Congo virus (a virus associated with a hemorrhagic fever outbreak in 2009)– yet we don’t know how they were transmitted, how common this is, and why even closely related rhabdoviruses of vertebrates can switch between asymptomatic and deadly.

Bats are exceptionally diverse, so their parasites are quite diverse with them. These parasites’ parasites (the viruses) are then unsurprisingly quite diverse as well. Bats are then an ideal reservoir for some truly horrific viruses to circulate and happily evolve in, as bats have a unique immune system allowing them to harbor zoonotic viruses and remain asymptomatic. As interactions between bats and humans increase there’s now further selective pressure and opportunity for viruses to expand their host range to hosts with less fine-tuned, dampened immune systems–like, us for example.

Sources:

  1. Kanyawara Virus: A Novel Rhabdovirus Infecting Newly Discovered Nycteribiid Bat Flies Infesting Previously Unknown Pteropodid Bats in Uganda. Tony Goldberg-Andrew Bennett-Robert Kityo-Jens Kuhn-Colin Chapman – Scientific Reports – 2017

2. The evolution, diversity, and host associations of rhabdoviruses. Ben Longdon-Gemma Murray-William Palmer-Jonathan Day-Darren Parker-John Welch-Darren Obbard-Francis Jiggins – Virus Evolution – 2015

Bioluminescence- the immense diversity of organisms that glow

Picture1

Bioluminescence is a beautiful evolutionary phenomenon which has aided organisms in defending against predators, attracting mates, attracting prey, communicating, and even coping with metabolic stress. A ton of groups contain bioluminescent members (fungi, echinoderms, cnidarians, the list goes on and on) including some real evolutionary stand-outs.

In most cases (but not all!), bioluminescence results from enzyme-catalyzed oxidation of luciferins—light-emitting compounds—by luciferases. There can be many different luciferase compounds used even in closely related species.

New luciferin found in glowworms

A newly identified luciferin was discovered in caves in New Zealand (because of course it would be in a cave in New Zealand) in glowworms. This luciferin uses Xanthurenic acid and tyrosine as the two precursors to the glow. This particular glowworm is Arachnocampa luminosa, a species of fungus gnat that, in its larval stage, produces sticky threads by building a long muscousy tube and moving along the tube sort of vomiting up little sticky threads to trap insect prey. How disgustingly beautiful nature can be!

glow-worm
Waitomo caves 

Glowworms are not really worms, but rather, larvae of several families of beetle and fungus gnat–however the bioluminescence is not homologous among the groups (so it’s arisen independently many times over). While it’s not always just the larvae that glows, the larvae emits the brightest blue-green glow. The glow helps the glowworms attract insects, attract mates, and protects them from predation (it also inspired James Cameron to make the blockbuster hit, Pocahontas with Glowworms Avatar).

Deep sea Cephalopods like to flash each other

An especially cool evolutionary example is of a deep-sea octopus, whose “suckers,” which still retain a sucker appearance and sucker-like traits, have had many of their muscle cells replaced with light producing cells. Researchers suspect this may have occurred as the result of once being a shallow-water bottom dwelling octopus, and moving to a deep open-ocean environment where suckers were less necessary.

Picture2
Deep sea octopus

Now it appears, the octopi use these glowing suckers for communicating to one another via visual signaling. They may also be using them for attracting a favorite prey item of theirs—copepods (small crustaceans). This is an unusual prey item for an octopus, but the copepods are attracted to the bioluminescence.

27tb-fireflysquid2-blog427
Toyama Bay, Japan where firefly squid gather to spawn. Credit: Brian J. Skerry/Getty Images

For a more flashy light show, I’d recommend the firefly squid. Their deep blue lights (produced by photophores) are used for communicating with mates and perhaps rival squid. The light can also be used to break up the body pattern to confuse predators and attract small fish to prey on (because deep sea fish just cannot seem to learn which glowing lights mean danger). The really cool thing about firefly squid though, is not so much the light they produce, but the evolution of their eye that seemed to come with it. They are thought to be one of the only cephalopods to have color vision (by the way, cephalopod eyes: a fascinating topic). They have three visual pigments while other cephalopods only have one, and this may be so they can better distinguish ambient light from bioluminescent light, and perhaps because their light color is pretty unique from other bioluminescence emitted in the deep sea.

Symbiotic bacteria- lux operon helps flashlight fish and bobtail squid

Picture3

In perhaps the most of obvious function of bioluminescence: The flashlight fish (Anomalous katoptron in this case, though there are several species), produces light using symbiotic bacteria. The fish’s light organs are located under it’s eyes so it can turn the light on and off by blinking. These organs are packed with bioluminescent bacteria to produce a greenish-blue light. Researchers found that the fish blink less (meaning their organs are open) in the presence of their planktonic prey indicating they use their bioluminescence for finding prey.

 

Quorum sensing and a beautiful tale of symbiosis

One of my favorite bioluminescent evolutionary excerpts is that of Vibrio fischeri and Euprymna scollops (the Hawaiian bobtail squid). V. fischeri is a symbiotic bacterium that produces bioluminescence through the lux operon (which involves another luciferase oxidizing a compound to produce blue-green light). The Vibrio interact with the squid (using type IV pili) which starts the maturation of light organs in the squid. These bacteria help the squid conceal its shadow while its foraging for food under the moonlight. This protects the squid from predators while providing the bacteria with a stable home. 980x

LuxIR21
simplified diagram of lux operon at low and high cell density

What makes this bacterium especially notable, is that it was one of the first bacteria to be discovered to use quorum sensing. Quorum sensing is a gene expression regulation tool (often called “bacteria communication” and totally going to be on your exam tomorrow) where the Vibrio’s gene expression responds to changes in bacteria cell density. A signal molecule- N-acylhomoserine lactone (AHL), is synthesized by LuxI (a protein produced by the lux operon I mentioned earlier) and leaves the bacteria cells. LuxR forms a complex with AHL and binds the lux box causing the activation of luminescence genes. The bacteria colonize the squid’s light organ at a very high density producing lots of this AHL molecule.

Millipedes: Glow first used for coping with climate, co-opted for warning signal

 

If you’re ever in California, be on the lookout for the Motyxia millipedes. They’re pretty easy to spot as they emit a teal glow from their entire body. They also produce poison cyanide which many other millipedes do as well. Instead of concentrating their glow to one light organ and instead of emitting light from a luciferase reaction, they glow all over their exoskeleton using a photoprotein whose homology is unknown.

02milipede.ngsversion.008b20579d50aba1495885e8617ccdd4.adapt.1190.1
M. sequoiae (left), M. bistipita (right)

But what’s REALLY cool about the Mytoxia is that for a while it was thought that bioluminescence evolved in the millipedes as a way to warn predators. However, when researchers discovered that another species (previously Xystocheir bistipita, now reclassified as Mytoxia bistipita) glows, but much more faintly, they looked more into it.

They found that Mytoxia may have actually evolved to cope with hot, dry climates (this species is found in the Sierra Nevada Mountains). The glow of M. bistipita is much less intense and they also have fewer predators than other species. Millepedes have difficulty metabolizing oxygen in hot, dry climates which creates toxic byproducts (like peroxide). Their bioluminescent photoprotein actually helps to neutralize these toxic byproducts. The researchers concluded that the millipedes colonized higher elevations more recently than the bioluminescence evolved, and that with that colonization came more predation. Only then did they co-opt the trait for warning predators of their poison cyanide production. The brighter the millipede, the more cyanide it contained!

Sources:

  1. Paul E. Marek, Wendy Moore. Discovery of a glowing millipede in California and the gradual evolution of bioluminescence in Diplopoda. Proceedings of the National Academy of Sciences, 2015.
  2. Jens Hellinger, Peter Jägers, Marcel Donner, Franziska Sutt, Melanie D. Mark, Budiono Senen, Ralph Tollrian, Stefan Herlitze. The Flashlight Fish Anomalops katoptron Uses Bioluminescent Light to Detect Prey in the Dark. PLOS ONE, 2017.
  3. Quorum Sensing in the Squid-Vibrio Symbiosis. Subhash C. Verma and  Tim Miyashiro. Int J Mol Sci. 2013 Aug.

Botulinum toxin found in new, common bacteria

c0115038
Clostridium botulinum, Photo: Eye of Science

Evolutionarily, horizontal gene transfer between bacteria is generally not so groundbreaking. In this case however, it’s a little more newsworthy. A lot of bacteria carry plasmids, which are mobile little DNA structures that are not part of the bacterial chromosome and can be transferred to other bacteria. Often plasmids contain genes that may provide some selective advantage (otherwise why bother keeping them?), such as a toxin or an antibiotic resistance gene. Enterococcus happens to be a frequent plasmid-carrier, which makes it an especially good candidate for frequent horizontal gene transfer. But first, Clostridium. 

Clostridum is an especially fun group of bacteria including some really famous germs:

  • C. tetani (Tetanus),
  • C. difficile (the bacteria in your gut that gives you stomach issues after you take antibiotics as it swarms in on all the spaces other bacteria used to be, before they were killed by antibiotics),
  • C. perfrinigens (perhaps the nastiest of all, gas gangrene),
  • the less famous C. sordelli (which is a rare–but plenty horrific, pregnancy and abortion-associated infection almost always resulting in death by toxic shock syndrome)
  • And of course, C. botulinum, the primary culprit of botulism.
What is Botulinum toxin?

C. botulium is known for releasing botulinum toxin (BoNT), a toxin which interferes with the release of the neurotransmitter—acetylcholine, from axon terminals at the neuromuscular junction resulting in flaccid paralysis (you can’t breathe).

The toxin (a protein) works by binding to receptors at the neuromuscular junction. It is then taken into the cell by receptor-mediated endocytosis. A conformational change occurs inside the early endosome (due to a pH change). A piece of the protein (the light chain) is translocated to the cytosol when another piece of the protein (the heavy chain) forms a sort of channel. This light chain can then cleave these important complex-forming “SNARE” proteins, which are vital to normal vesicular transport and neurotransmitter (which in this case is acetylcholine) release. So without these SNARE proteins, the little acetylcholine vesicles don’t get to where they need to be. In normal neurotransmitter release, SNARE proteins would work to tether the vesicles to the membrane so the cell and vesicle membranes could fuse to allow the release of neurotransmitters.

Screen Shot 2018-02-02 at 11.12.42 PM
Visualized by me on Pymol- PDB file: 3BTA, BoNT, Serotype A. You too, can play around with it in pymol/swissPDB/Chimera/some other visualizer!

Botulinum toxin is the deadliest toxin known, requiring just two billionths of a gram to kill one person. It’s so dangerous that when type H (one serotype of the toxin) was discovered and failed to be controlled by typical botulinum antibodies, the type H toxin became the only example of a genetic sequence that was hidden from public databases due to security concerns. I say “may be” because how would we really know?

Not just in C. botulinum anymore

While we used to take comfort in knowing we could probably avoid Clostridium botulium by just avoiding puffed up canned food, rotten meat, and organic honey, that may no longer be the case. For the first time, the botulinum toxin has been found in a completely different (and very distantly related) bacteria: Enterococcus.

This new variant of the toxin called BoNT/En, was found in South Carolina, in an E. faecium strain isolated from cows. And it wasn’t just the toxin that was found. Several associated proteins that prevent the toxin from being degraded were also found. That being said, the BoNT/En variant didn’t give the cow it was found in, botulism, and it was not actually very harmful initially in mice. Researchers had to manipulate the toxin to better target mice before it was able to actually kill them (I know. Trying to give mice botulism is upsetting, and the reason why I stick to cells and microbes for my research). They are testing the toxin on human neurons to see how toxic it is to humans.

Enterococci_Bacteria_Cluster
Enterococcus

What makes this particular jump so terrifying is that Enterococcus is a highly abundant group of bacteria all over our bodies. It is ubiquitous in animals and actually a significant human pathogen. E. faecium is a very hardy bacterium easily evolving antibiotic-resistance and actually pretty difficult to get rid of in hospital surfaces. The thought of a dangerous neurotoxin being easily transferred to a ubiquitous and antibiotic-resistant bacteria is somewhat frightening. That being said, plasmids containing incredibly dangerous neurotoxins would likely need to provide a selective advantage to the host to stick around (and it’s possible in E. faecium’s case, it could even provide a slight disadvantage). BoNT can be carried in a bacteriophage, in a plasmid, or on a chromosome, but carrying a sizable gene cluster you don’t need in evolution has usually resulted in a “you don’t use it, you lose it” outcome. As plasmids by themselves are slightly disadvantageous to carry, what keeps them around is any selective advantage the genes they contain provide.

Where did these toxins come from?

Researchers found that the homolog of BoNT in Clostridium, seemed to be a flagellin gene. These flagellins contain collegenase which breaks down peptide bonds in collagen, so they are also a proteolytic toxin family like the Clostridia neurotoxins. They believe that the neurotoxin and adjacent genesevolved from an ancestral collagenase-like gene cluster.  This gene cluster was likely duplicated and evolved separately to become the BoNT we know today.

My case against Botox: amazing, but maybe take it easy?

Botox can be useful for treating cerebral palsy, urinary incontinence, wrinkles, sweating, spasms, headaches, and tinnitus. While no one’s reportedly died from cosmetic Botox use (presumably because people are probably extra careful with such a terrifying substance), there’s a risk of the toxin spreading beyond the injection site and causing respiratory paralysis. While ordinarily I’m totally accepting of people’s desire to do strange or expensive things in the name of beauty, my (probably illogical) fear is that all it takes is one new guy thinking a smudged decimal point is a comma and you’re dead of flaccid paralysis.

Consider that a muscle with a cut nerve will quickly result in atrophy which will definitely make you look worse, not better. Not using your face muscles isn’t going to prevent you from wrinkling because the issue is not the muscles, but the soft tissue decline that comes with age. Neuromodulators like Botox are very expensive, usually require a high enough dose to actually be effective and wear off in a few months, meaning you would have to get several injections a year to stay smooth and shiny, and the repeated injections are when people tend to see more negative side effects and require a higher dose.

Paralyzing muscles over and over again is not great for you long-term so maybe try sunscreen, a nice skincare routine, and drink plenty of water instead? Mistakes happen, people misplace decimal points, I’d rather not be near it personally. Just a friendly PSA to remind you to definitely do your research if you want to mess around with botulinum toxin!

Sources:

  1. Sicai Zhang et al. Identification of a Botulinum Neurotoxin-like Toxin in a Commensal Strain of Enterococcus faecium. Cell Host and Microbe, 2018
  2. P.K. Nigam, Anjana Nigam. Botulinum Toxin. Indian Journal of Dermatology. 2010 Jan-Mar; 55(1): 8–14.
  3. Doxey AC, Lynch MD, Müller KM, Meiering EM, McConkey BJ. Insights into the evolutionary origins of clostridial neurotoxins from analysis of the Clostridium botulinum strain A neurotoxin gene cluster. 2008.

Cryptococcus — (r)evolutionary genius

20130801094730-14ecdec0-me

If you’re in the market for a particularly fun fungus to tell your friends about, I’d suggest the pathogenic yeast, Cryptococcus.

Cryptococcus is primarily known for causing Cryptococcal meningitis—a leading cause of death in AIDS patients. This is Cryptococcus neoformans, which, while more common really only infects the immunocompromised. Its cousin, Cryptococcus gatti, frequently infects immunocompetent, healthy individuals and is an important emerging pathogen. Weirdly enough, C. gatti infections all seem to come from trees. The fungal pathogen has dispersed all over the world surprisingly, scientists believe, due to continental drift. In the past few years, there’s been large outbreaks of the less common Cryptococcus gatti in the Pacific Northwest/Canada and South Africa.

Sex has something to do with it

Cryptococcus needs a lot of sugar to reproduce, particularly inositol which is all over the human brain and spinal cord which is probably why Cryptococcus is known for causing meningitis. Cryptococcus (depending on the species) has between about 6 to 12 genes involved in inositol transport while most fungi have only about two. While inositol is needed for reproduction and results in higher virulence, which mating type the fungus is may also play a large role in pathogenicity.

In yeasts there are two mating types, MATa and MATα. MATα strains are able to produce an extensive hyphen phase in the haploid state called monokaryotic fruiting. All the clonal C. gattii VGII (or C. deuterogatti) that have been infecting people have notably been from the same mating type: Matα. MATα strains are capable of same-sex mating which could be the origin for the outbreak around Vancouver. In C. neoformans, MATα strains which have their own genes specific to that mating type, are associated with higher virulence (but there’s no evidence of this with C. gattii). 

From Springer 2010, isolations of C. gatti from human clinical, veterinary, environmental sources. Underestimation of actual prevalence.
Hypermutator

Researchers found that several isolated C. deuterogatti strains contained mutations in MSH2, one of the genes involved in mismatch repair (genes that fix DNA replication errors). The human homologous MSH2 gene has the same effect where humans with mutations in MSH2 can have Lynch Syndrome, where they’re prone to various cancers.

The mutations in MSH2 in fungi were tested and resulted in their genomes mutating at a faster pace but growing at the same rate as wildtype Cryptococcus strains. When exposed to stressful conditions however, such as antifungals like rapamycin and FK506, the mutant strains rapidly took over as they could quickly acquire resistance to drugs. In the process of acquiring drug resistance the strains actually decreased in virulence and were significantly weakened compared to the outbreak strains.

So the hypermutators are much more fit in stressful conditions and can rapidly outcompete the wildtype strains, however they make a less fit pathogen without significant selective pressures present. This brings up an interesting question in host-pathogen evolution—what kind of genome makes for an ideal pathogen? Fungi in general are lousy pathogens, especially in people. Certainly white-nose syndrome in bats and chytrid fungus in amphibians have devastated populations but there aren’t a whole lot of “in between” fungal pathogens. Having a lower mutation rate than bacteria or viruses contributes to their easiness to treat. While in bacteria a hypermutator strain rapidly evolving drug resistance usually sounds like a bad thing, in this case hypermutator strains taking over would at least lower the virulence and fitness of the fungus as a pathogen.

It’s even worse in men

As is the case with many pathogens, there is an increased incidence of the disease in men and when it does appear mortality rates are significantly higher in men. C. neoformans isolates from females had a slower growth rate and released more capsular glucoronoxylomannan (GXM), (a virulence factor and immunosuppressant). Testosterone was associated with higher levels of GXM release while 17-β estradiol was associated with lower levels and slower growth rate. Furthermore, macrophages from females were better at fighting off C. neoformans than macrophages from males which were more damaged from the infection. This may explain why infections are more common in men.

While Cryptococcus neoformans has been a common issue for a while, Cryptococcus gatti has only recently emerging as a prominent pathogen, which scientists believe could be the result of climate change. These Cryptococcus infections infect healthy people and are fatal if left untreated.

Sources:

  1. The second STE12 homologue of Cryptococcus neoformans is MATa-specific and plays an important role in virulence. Y. Chang-L. Penoyer-K. Kwon-Chung – Proceedings of the National Academy of Sciences – 2001
  2. The Role of Host Gender in the Pathogenesis of Cryptococcus neoformans Infections. Erin Mcclelland-Letizia Hobbs-Johanna Rivera-Arturo Casadevall-Wayne Potts-Jennifer Smith-Jeramia Ory – PLoS ONE – 2013
  3. Highly Recombinant VGII Cryptococcus gattii Population Develops Clonal Outbreak Clusters through both Sexual Macroevolution and Asexual Microevolution. R. Billmyre-D. Croll-W. Li-P. Mieczkowski-D. Carter-C. Cuomo-J. Kronstad-J. Heitman – mBio – 2014

 

Cretaceous pterosaur diversification and extinction

Pterodactylus-paddles-low-res
Artist: Mark Witton

Few things are as disappointing as learning that no pterosaurs survived the K/Pg extinction. This has always been especially hard for me to emotionally accept due to their immense diversity. The typical explanation usually told is that they were wiped out with the non-avian dinosaurs after the chicxulub impact, and that they were barely alive by that time anyway because all the birds had filled up the flying niches. However recent evidence indicates that pterosaurs actually were doing very well up until 65 million years ago. Why they went extinct may have nothing to do with birds or a failure to diversify. Serial size reduction allowed for smaller pterosaurs to survive through other extinctions. Reaching sexual maturity before being fully grown allowed for smaller hatchlings maturing more quickly, allowing for more reduction in size by accelerating evolution somewhat. So if there were smaller pterosaurs at the end of the Cretaceous, AND pterosaurs have previously proven to be capable of relatively rapid phylogenetic size decreases, why did no pterosaurs survive?

The Cretaceous is more known for its giant, “small-plane sized” pterosaurs (Arambourgiania, Quetzalcoatlus, and one that’s been in the news more recently for “terrorizing” Transylvania: Hatzegopteryx). For background pterosaurs are split into two major suborders, with Rhamphorhynchoids being a paraphyletic group characterized by having teeth, long tails, and a cruropatagium that stretched between the feet (like how bats have it). Most were small and lacked bony head crests. They appeared in the Triassic and went extinct during the Cretaceous though there is no strong evidence to indicate they were outcompeted by pterodactyloids which is a common assumption.

Pterodactyloids, the other suborder, did not appear until the late Jurassic and were much more successful and diverse in the Cretaceous. While all pterosaurs are outstanding creatures, the pterosaurs this post is concerned with would all be pterodactlyoid members.

pteros-rhamps
Rhamphorhynchoid on left, Pterodactyloid on right

No fossils of pterosaurs have been found from after the K/Pg extinction (and I don’t believe there ever will be 😦 ). But while there are certainly no pterosaurs alive today, there is a lot of evidence indicating that pterosaurs were actually quite diverse even at the end of the Cretaceous, and that some were even very small. The discovery of small pterosaurs from the late Cretaceous does seem to indicate that the reason for their clade’s total extinction was not simply because they were just “too large.”

Small pterosaurs may have been more abundant in Cretaceous than previously thought

A small azhdarchoid (azhdarchoids being the most recent common ancestor of Quetzalcoatlus and Tapejara, and all its descendents) pterosaur was discovered from the Campanian Northumberland Formation of British Columbia. With an estimated 1.5m wingspan, the pterosaur specimen is described as being about the size of a large seagull. The specimen found might not actually be an azcharchoid, but it certainly was from a pterosaur. Researchers were able to analyze the bones to determine whether or not it was juvenile or adult and found that the specimen was either fully grown or very close to being fully grown. For more on that, read the paper here.

F6.large

Pterosaurs preserve terribly. They’re bones are hollow, their skeletons are fragile, they didn’t routinely die in nice, preserving environments. During the Cretaceous, pterosaurs shifted from marine to more non-marine habitats. This may account for the lack of data on small, difficult to preserve pterosaur fossils in the late Cretaceous. Terrestrial habitats do not preserve fragile fossils. Even much larger, denser bones do not often preserve well in terrestrial environments. The fossils that have been found from pterosaurs of this period are usually in very bad shape and are only fragments of the entire skeleton. Often times, fossils have to be looked at by many bird and pterosaur specialists before it can even be determined that the bone WAS from a pterosaur.  There is a lot of growing evidence suggesting that smaller pterosaurs in the late Cretaceous were not as rare as once believed.

Birds not the cause of pterosaur extinction

Pterosaurs were excellent fliers, almost definitely warm-blooded like birds (due to the energy expense of their lifestyle) and seemed able to adapt to a wide variety of niches. So it’s strange to imagine them going extinct due to their failure to diversify in the presence of birds. A study showed that pterosaurs actually diversified more after birds appeared. Pterosaurs had about a 160 million-year run on Earth and were relatively similar morphologically for the first 70 million years. They then began to experiment, trying out many modes of life. As birds became more successful, the pterosaurs actually responded by diversifying more. The emergence of birds (at least 50 million years after the first pterosaurs), encouraged the pterosaurs to try out new diets and feeding styles as seen by the rapid diversification of skull shapes in the fossil record. The general direction they went towards was much larger bodies. This was when the famous giant Quetzcoatlus types emerged.

sources:

  1. A small azhdarchoid pterosaur from the latest Cretaceous, the age of flying giants. Martin-Silverstone, Elizabeth, et al. Royal Society Open Science. 2016.
  2. Evolution of morphological disparity in pterosaurs. Katherine Prentice, Marcello Ruta, Michael Benton – Journal of Systematic Palaeontology – 2011

 

 

 

A microbe manipulating sex- and how it can fight Zika

undefined_wide-80668a914b369846df055a261ff197507485ee8b.jpg

A fan favorite, and probably the most successful genus on the planet–at least on land—the bacteria, Wolbachia infects an estimate between 40 to 65% of all arthropod and nematode species. This microbe is constantly drifting across the line between mutualist and parasite to it’s host. Some hosts are unable to survive and reproduce without a Wolbachia infection whilst others are killed by it.

Wolbachia as a mutualist

Plenty of species have become reliant on this microbe. The caterpillar of the spotted tentiform leaf miner uses Wolbachia to create green islands on yellowing leaves which remain fresh for munching on.

It provides a benefit to certain nematode worms, such as Brugia malayi and Wuchereria bancrofti which cause elephantiasis, and which cannot survive without a Wolbachia infection. Image1.jpg

Some Wolbachia bacteria provide metabolic advantages to their hosts such as in bed bugs who use it to synthesize B-vitamins that are absent in their blood meals. Wolbachia can even mediate iron metabolism in Drosophila.

But most exciting given the recent explosion of flavivirus infections (Zika traveling farther and farther north every summer for example), Wolbachia provides flies with resistance to many RNA viruses.

Wolbachia as a sex-determinator

In leafhoppers, Zyginidia pullula, females have two X chromosomes while males have only one X chromosome, yet when infected with Wolbachia, the X0 genetic males appeared to be female.

Some females of the Japanese butterfly, Eurema mandarin have a sex chromosome system where the males are (ZZ) and the females are (ZWEurema_blanda_on_flower_by_kadavoor.JPG). This incongruence between chromosomal and phenotypic sex can be explained by feminization of genetic males induced by Wolbachia. Two strains of WolbachiawCI and wFem, have been found in E. mandarina and the females having male chromosomes (ZZ) are consistently infected with both wCI and wFem. However females with only wCI are true females (ZW). Despite having male chromosomes, ZZ females are physically female and fully fertile.

A similar thing happens in woodlice (pillbugs? Roly-polys?), where all the ZZ males infected with Wolbachia develop as female. The W chromosome is sometimes lost entirely in these populations and sex is entirely determined by presence or absence of Wolbachia.

Who needs males?

Wolbachia has evolved into an intracellular parasite, and while it can infect many different organs, it is most famous for infecting the testes and the ovaries. Wolbachia are too large for sperm, but fit nicely into mature eggs so the infection is inherited maternally through the eggs.

So now the evolutionary dilemma that keeps Wolbachia on the balance between parasite and mutualist is, if males are an evolutionary dead-end, how does this intracellular parasite that needs its host to survive and reproduce, and it’s host species to continue thriving, evolve to both spread throughout populations but not allow evolutionary cheater strains to ruin everything? Wolbachia has developed numerous ways of targeting males to help itself spread such as:

  • Male killing- infected male larvae die, so more infected females are born
  • Feminization- where infected males develop as females or infertile pseudofemales
  • Parthenogenesis- when females reproduce without males
  • Cytoplasmic incompatibility (CI)- when Wolbachia-infected males can’t successfully reproduce with uninfected females or females infected with another Wolbachia strain.CI-causing Wolbachia interferes with the chromosomes during mitosis so they no longer divide in sync.
wolbachia.jpg
Warren et al, 2008, Nature Reviews, Microbiology.

Mosquitos carrying Wolbachia have a higher reproductive success when present in a population with mosquitoes not carrying Wolbachia. When a male mosquito carrying Wolbachia tries to mate with a female who is not carrying Wolbachia, the female’s eggs won’t hatch. However females with Wolbachia do not have this issue and produce perfectly healthy offspring which are all also carriers of Wolbachia. So you can imagine how the Wolbachia is able to sweep through a mosquito population. The female Wolbachia carriers have a much higher fitness than the non-carriers.

Scientists have taken advantage of this evolutionary strategy in fighting mosquito-transmitted viruses such as Dengue and Zika. The Aedes aegypti, a black-and-white striped species of mosquito infects people with Dengue virus which has no vaccine or real treatment and causes pains, fevers, rashes, and headaches. A plan (credited to evolution/ecology biologist, Scott O’Neill) to release Wolbachia infected mosquitos into the wild to lower dengue spread is becoming more and more popular. Wolbachia stops Aedes mosquitoes from carrying degue virus. Wolbachia carrying females have a selective advantage and should sweep through the population.

Wolbachia to rescue us from Dengue (and others?)- The original plan

An unusually virulent strain of Wolbachia the ‘popcorn’ strain, essentially halves the mosquito lifespand (it’s pretty gruesome, the bacteria essentially reproduce like crazy in the brains, eyes, and muscles filling up neurons). Dengue takes a long time to be able to reproduce and make it to the salivary glands so it can be transmitted, so only older mosquitos can transmit it.

Unfortunately Aedes (and Anopheles which transmist malaria) are not natural hosts of Wolbachia infections, so Scott O’Neill carefully developed a new symbiosis by injecting eggs. This took forever to work, until one lucky grad student was able to make it a success. Finally, an egg was stably infected and a line of Wolbachia-carrying Aedes was created. But after all that work, the strain was too virulent and the females did NOT have a selective advantage and actually had lower numbers of eggs with lower viabilities (honestly, they should have seen this coming really).

a_aegypti.png

But none of that even ended up mattering because some other scientists figured out that Wolbachia stops dengue virus from replicating. Simply the presence of a nonvirulent strain of Wolbachia in the population was enough to stop the spread of dengue. So the team switched to a less virulent strain, wMel, and successfully started a line of wMel carrying Aedes mosquitos.

wMelwAlbB update and some critiques of the data

As amazing as Wolbachia is, it will take at least a few years to get significant results and many years to eliminate any particular mosquito-transmitted pathogen with this method. Some papers say Wolbachia was able to make not only dengue, but also Plasmodium and other flaviviruses less able to replicate, but others said the opposite. It would be kind of important to figure out how the Wolbachia is inhibiting the virus because no one seems to agree if it’s general or specific. But now with significant selective pressures on all these diseases I’d suspect it’d be easy to switch host vectors because mosquitos bite hosts, geographically spreading infections very far (potentially) exposing the virus to a wide variety of new potential hosts vector species.

In a 2016 paper looking at the progress of the wMel strains, they collected Ae. Aegypti after one year and it continued to have low levels of dengue (which implies it was passed around through tons of mosquitos and not a whole lot of apparent evolution has taken place in terms of resistance) but what if the some of the dengue viruses switched species?

They could try passing the dengue through many mosquitos perhaps in a mixed host population. Or basically just try to provide the virus with as many opportunities as you can for it to evolve in the hopes that you may understand potential mechanisms the different diseases may have to get around this one Wolbachia infected species of vectors.

While the paper shows wMelwAlbB, the superinfection, that strain of Wolbachia actually doesn’t appear to inhibit DENV very much. But later in the paper, it’s very dramatically different so it’s difficult to say if the data is actually supporting that the superinfection sweep will work.

As far as how they ensure the right strain is dominating all the time given selective pressures towards different mosquito sex alteration methods, that remains unanswered. Combined male-killing CI strains readily become extinct following invasion so CI strains are more selected for but sex-ratio distortion decreases male infection and therefore reduces the occurrence of CI meaning that you might expect selective pressure for evolution from CI to CI/sex ratio distortion to sex ratio distortion only.

Wolbachia’s potential

Using Wolbachia’s ability to stop mosquitos from carrying Zika, Dengue, Chikungunya, Plasmodium—the parasite responsible for malaria, may mean the eventual elimination of these diseases in humans.

It may even be used to someday stop nematode worms from causing blindness, disability, elephantitis etc in many millions of people every year.

New-Insights-Into-Dengue-Virus-e1442850548475.jpg

Particularly inspiring about this story is how ecologists and evolutionary biologists ended up being the ones to figure out a way to eliminate viral infections. Yet more evidence that pre-med students or medical researcher hopefuls shouldn’t blow off biodiversity/ecology/evolution classes in college.

Sources

Kageyama, Daisuke, Satoko Narita, and Masaya Watanabe. “Insect Sex Determination Manipulated by Their Endosymbionts: Incidences, Mechanisms and Implications.” Insects 3.4 (2012): 161-99.

I contain multitudes: the microbes within us and a grander view of life. Ed Yong, 2016

Bacterium offers way to control dengue fever. Natasha Gilbert – Nature – 2011.

Establishment of a Wolbachia Superinfection in Aedes aegypti Mosquitoes as a Potential Approach for Future Resistance Management. D. Joubert-Thomas Walker-Lauren Carrington-Jyotika Bruyne-Duong Kien-Nhat Hoang-Nguyen Chau-Iñaki Iturbe-Ormaetxe-Cameron Simmons-Scott O’Neill – PLOS Pathogens – 2016